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INTEGER RELATIONS AMONG ALGEBRAIC NUMBERS 

BETTINA JUST 

ABSTRACT. A vector in = (in, . mi n) E Zn \ {O} is called an integer rela- 
tion for the real numbers a, . a ,n if Eaam = 0 holds. We present an 
algorithm that, when given algebraic numbers a, 5 . an and a parameter a, 

either finds an integer relation for a 1 ... a an or proves that no relation of 
Euclidean length shorter than 1/e exists. Each algebraic number is assumed 
to be given by its minimal polynomial and by a sufficiently precise rational 
approximation. 

Our algorithm uses the Lenstra-Lenstra-Lovasz lattice basis reduction tech- 
nique. It performs 

poly (log I/e, n, logmaxheight(ad), [Q(a1 . an): QI) 

bit operations. The straightforward algorithm that works with a primitive ele- 
ment of the field extension Q(a. an) of Q would take 

poly (n, logmaxheight(a1), degree(a) 

bit operations. 
In order to prove the correctness of the algorithm, we show a lower bound 

for I ZE ,inI if in is not an integer relation for a. an , which may be 
interesting in its own right. 

1. INTRODUCTION 

For n real numbers a ... a , a nonzero integer vector m = (ml, ..., mO) 
with Eaimi = 0 is called an integer relation for al ,..., Xa". The problem 
of finding integer relations has been widely studied in the literature. Jacobi 
[10], Perron [15], Brun [5], Szekeres [19] and others studied this problem- 
among others-in the context of generalizing the continued fraction algorithm 
to higher dimensions. They used the unit cost model, that is, one step is one 
arithmetic operation on arbitrary real numbers. Only recently, the integer rela- 
tion problem in this model has been solved. Ferguson and Forcade [6, 7] and 
Bergman [2] presented, and Hastad, Just, Lagarias, and Schnorr [9] analyzed, 
an algorithm for it. For given a, ..., a and e > 0, this algorithm performs 
poly(n, log 1/e) arithmetic operations on real numbers and either finds an in- 
teger relation for a(x ... , an, or proves that no relation of Euclidean length 
shorter than 1/e exists. Babai, Just, and Meyer auf der Heide [1] showed that 
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the parameter e cannot be omitted: in a very general model of computation 
there exists no algorithm that proves the nonexistence of integer relations. 

Arbitrary real numbers cannot be represented in a computer, and for practical 
purposes the unit cost model is not a realistic one. So we turn to numbers that 
can be represented in a computer, namely rational and algebraic numbers. The 
computational model is now the one counting one bit operation as one step. 

In [9], the integer relation problem for rational inputs is investigated. Of 
course, rational numbers a1, ..., an always satisfy integer relations, and in [9] 
it is shown how to find them in polynomial time. The present paper deals with 
algebraic numbers. An algebraic number a is a real or complex root of a uni- 
variate integer polynomial p(x) E Z[x]. It is represented in finitely many bits 
by the polynomial and by a rational approximation precise enough to separate 
it from the other roots of the polynomial. The algebraic numbers a1x, ... ,Xn 
may or may not satisfy an integer relation, so the situation is more complicated 
than the situation with rational inputs. We present a polynomial-time algorithm 
for the integer relation problem among algebraic numbers. Before we present 
our results in greater detail and discuss them, we recall some notation and facts 
about algebraic numbers. 

Let p = Z0 plx' (E Z[x] be an integer polynomial with 0d $ 0. Then d 
is the degree of p, and the Euclidean length 1(po ..., Pd)"1 of the vector of 
coefficients is the height of p. We denote by d(p) the degree and by h(p) the 
height of p. The polynomial p is primitive if gcd(po, ... , Pd) = 1 and Pd > 0 
hold, and it is monic if Pd = 1 . 

For any algebraic number a = (Re(a), Im(a)) E C there exists a unique 
primitive polynomial pa z Z[xl of smallest degree, the minimal polynomial of 
a. The degree d(a) and height h(a) of a are defined as the degree d(pa) and 
height h(pj9, respectively, of the polynomial pa . If px is monic, a is called 
an algebraic integer. The set of algebraic integers forms a ring. 

Field extensions of Q by algebraic numbers are called algebraic number 
fields. We denote by [Q(a1I, ... , an): Q] the degree of the field extension 
Q(al, ... , an) over Q. By the theorem of the primitive element ([8, p. 167]) 
we know that this extension is generated also by a single algebraic number y, 
thus Q(al, ..., an) = Q(y). A procedure of Loos ([4, p. 184]) constructs y 
fromal, ... , an and represents al ... X an as rational polynomials in y, so 

ai = Z(j)- Ic (') Y. Now a nonzero integer vector m = (mi ..., mO) is an 
integer relation for al ,... an if and only if it solves the system of linear 

equations I=> m1c(') = 0 for j = 0, ... , d(y) - 1 . 
A first attempt to find integer relations among algebraic numbers uses Loos' 

procedure and then solves this system. The run time of this attempt is polyno- 
mial in H d (a, ), n and log maxi h (as ) . In this paper we do better. We present 
an algorithm which is polynomial not in H d(a1), but only in [Q(al, ... , a(x): 

Q] (and, of course, in the sizes n and log maxi h (a,)). The difference between 
H d(al) and [Q(ala ... , an): Q] is large especially if there exist integer rela- 
tions for a1, ... , an. Our algorithm is described in ?3 and is very different 
from the one described above. It uses lattice basis reduction as a fundamen- 
tal feature. For the analysis, we prove in ?2 a lower bound for I E ml a, I if 
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m = (ml, ... , m") is not an integer relation for a(x, ... ., a. The lower bound 
may be interesting in its own right. Its logarithm is polynomial in logI mII, 
n, log max1 h(ai) and-most important-in [Q(al, ...a, (x): Q], but not in 
H d(ae) . 

2. A LOWER BOUND FOR Zaii|m IF aimi $ 0 

The purpose of this section is to prove the following proposition. 

Proposition 1. Let ax I ... , an be algebraic numbers. Denote by s the inte- 
ger [Q (a, ..., ' an): Q] and by h the real number maxi h((i) . For m = 

(m 1,.mn ) Z \ Z{} define 

a(n, s, h, 1mHl) := ((2n)s(llmHlS * h)ns(2+ns) + 1)' 

If >Zaxmi :A 0, then I Zalmil > a(n, s, h, 11mll). 

Proposition 1 will be proved with the help of Lemmas 2 and 3 below. Both 
lemmas will use the fact that for any algebraic number a we have 

Jal < h(a) + 1. 

This is an immediate consequence of the following Cauchy Inequality (cf. [4, 
Theorem 2, p. 259]): 

Let p = ,o plax e Z[x] be a polynomial of degree d. Then any root a 
of p satisfies 

all < I + max "P11 

Lemma 2. If a(, ..., an are algebraic integers, then for a := En~ a( we have 

t 0 ~~~~~d(ce) 
h(a) ? (2n* H h(aj) 

V J=J 

The proof of Lemma 2 requires basic facts on algebraic number fields and 
Galois theory, which can be found, for example, in [3]. 

Proof of Lemma 2. Denote by X the field extension Q(al, ...a, nx) of Q, 
and let y EzX be a primitive element, hence Xk' = Q(y). Let Y be the root 
field of the minimal polynomial pig of y. Hence we have for all 1 < i < n 

Q C Q(ai) C4X C /V. 

For any fi E Y we denote by fl(1), .. ., fl(d(f)) the conjugates of fi over Q. 
We have fl(1), ... , (d(#)) E Y, since X is the root field of a polynomial and 
thus the field extension Y: Q is normal. 

Moreover, the fundamental theorem of Galois theory implies 

for 1 < j < d(fl) there are exactly [X: Q] automorphisms 
) ofY that map fi to fl 
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d Now for any polynomial p = EiZ=opix' E Z[x] of degree d with the (complex) 
roots (1 ), ... ,(d) we define the measure M(p) by 

d 

M(p) := 1Pd1 | r maxf 1, 16(j) I} . 
j=1 

We know from M. Mignotte ([4, Theorem 2, p. 260]) that 

(2) M(p) < h(p). 

Now we show 

-d (3) 2 *h(p) < M(p). 

For any subset {1(i), ... , ?(i,)C ... , 5(d)} we have 

? M(P)/lPdl. 
j=1 

Moreover, p = Pd H d i(x - 5(j)); the pi are symmetric functions of the 

( This implies 1piI < (df) . M(p) for all 0 < i < d. Hence we have 
dd 

Zi=o IpA < 2d M(p), which implies (3). 
In order to simplify notation, for any z E C we shall write z* instead of 

max{1, zj}. 
For z, E ... zE C we have 

</.max1, maxlzjl <I.*HzY, 
j=1 

1<j<1 ~~~~~~j=1 

which implies 

(4) z <I*Ilz* 
ij=l j=l 

Now let pa be the minimal polynomial of a. Since the algebraic integers 
form a ring, a is an algebraic integer, which implies M(pa) = Hd-e) a(i)* . Now 
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we have 

(3) d(a) 

h(a) ( 2 M(p ) = 2d''x) *J 
i=l 

( 1/[Y: Q(a)] 

(-) 2d('t) (. LV ( oa)) )1L:ii' (1) d (I I1(a1 
( EAut( 21') 

* - (n'( QA 1/[V: 

n 

=2d(t . E a (ai )) 
aEAut(,V') i= 1 

, 1/[-/V QWct] 

(<) d(04 17P M(: Q Q Q][Q(()* Q 

aEAut(1') 1=1 

n 0 1~~~/P'>: Q(a)] 

T (2n)fi eo e ma a(a2i) 
1=1 cEAut(.4f')J 

n /d(, ) 
V Q( ,)] 

-(2 n) * 1 Ha r i) 

n 

= (nd('a) . ~ [Q('k): Q]/[Q('k,): Q1 

< (2n *h h(a,)) 

This finishes the proof of Lemma 2.o 

Lemma 3. For m e Zn \ {O} and algebraic numbers al a n defne a:= 

L = Z> a m . Then we have 

h (o) < (2n * rI(l I m II d(alt) h (a, ) 2J'= 'd, (t 

Proof of Lemma 3. Let for the moment fi be an arbitrary algebraic number of 

degree d with minimal polynomial Pf = Zd opx'. The number Pd > 0 is 
called the leading coefficient of fi and is denoted by F(fl) . We shall use the 
claims (1)-(4) below. 

(1) F(fl) *fi is an algebraic integer. 

Proof. The polynomial EZd o p1F(l) d ' x' e Z[x] is monic of degree d(/3) = 

d(F(,B) * ,B) and has a root at F(,B) * ,B. 

(2) For k e Z \ {O} we have h(k * ,B) < IkId * h(,B). 
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Proof. The polynomial ,d k d-iX- x e Z[x] is of height at most lkId * h(p) 
and is an integer multiple of the minimal polynomial of k *,/. 

(3) For k E Z \{0} we have h(/) < I?kId * h(k * ./). 

Proof. If Zl% giXl is the minimal polynomial of k *6, then l=o k gix' is 
an integer multiple of p, of height at most Ik d * h(k f*). 

(4) If yj, ..., Yr are algebraic numbers, then for y := Er we have 

/ r d(y) 
h(y) < (2r * j h(y )2 j= ) dy) 

Proof. We first observe that for all 1 < i < r the number Yi H>=I F(yj) is an 
algebraic integer. This follows from (1) and from the fact that algebraic integers 
form a ring. Now (2) implies for all 1 < i < r 

r r d(>yi)r d(Y,,) 

h ty, r F(y i-) < rl F (yy ) *h (Yi) < h (yl) * |V h (ye) 

Lemma 2 yields 

Yi 
_E r d~~~~~~~~yi~) d(y) 

(1=1 (j=l 1=1 

Application of (3) with k H 1 F (y) implies 

h ( y) < rl F ( yj ) * 2r*r!Lh ( yl)" Ej=1 d(y )) 

This implies (4), since F(yi) < h(yl). 
Now in order to prove Lemma 3, we assume without loss of generality, that 

there exists an r E {1, ...,n} such that ml 54 0 for all 1 < i < r and ml = 0 
for all i > r. For 1 < i < r define y, := a, ml. Then (2) implies 

h(yl) < lmlHl d(al) * h(a1). 

Application of (4) then proves Lemma 3. o 

We are now able to prove Proposition 1. 

Proof of Proposition 1. Lemma 3 immediately implies 

(1) h (caom1) < (2n)s. ((IlmllS h)2+ns) 

Now let a be an arbitrary nonzero algebraic number. If Zd=%p x' is the 
minimal polynomial of a, then Ed0 plx d-'is the minimal polynomial of 
a Since lal h(a) + 1, we have la1 ? <h(a) + 1 and thus 

(2) (h(a)+ 1)-' < lal. 
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Now we get 

|~m ?1 (1) (1m11 h)ns(2+ns) \1 (2)m ( h Eaml) + I ? ((2n)s +1)1ls 

and Proposition 1 is proven. o 

3. THE ALGORITHM 

We want to decide whether given algebraic numbers satisfy an integer relation 
shorter than a given bound. This will be done by deciding whether a suitably 
chosen lattice contains a short vector, which in turn is done by the famous LLL- 
lattice basis reduction algorithm. We briefly recall some lattice basis reduction 
theory. 

Let b1, ..., bn E Rk be linearly independent vectors. The set L = b Z 
is called the lattice spanned by bI, ..., bn. The set {b, ...,bn} is called a 
basis of the lattice L, and n is the dimension of L. The dimension of L 
is unique, the basis is not. The purpose of lattice basis reduction theory is 
to find lattice bases that contain "short" vectors. The specification of "short" 
depends on the lattice, and also on the mathematical context. A very inter- 
esting algorithmic problem is to find the shortest (nonzero) vector of a given 
lattice. An exponential algorithm for this problem is presented in [ 1]. It is not 
known whether the problem is NP-complete, but up to now no subexponential 
algorithm has been found. There are polynomial-time algorithms to solve the 
problem approximately ([14, 16]). 

LLL-Theorem ([14]). There is an algorithm which constructs from rational 
b, . ..., bn a vector b E L \ {O} such that 11bH12 < 2n-1 v112 holds for all v E 
L \ {O}. If the components of all bi have common denominator D, and if 
max D D 11b 1l is at most B for some natural number B > 2, then the algo- 
rithm performs O(n3k log B) arithmetic operations on numbers of binary length 
O(nlogB). 

(Remark. The algorithm actually constructs an entire basis of short lattice vec- 
tors, but this will not be used here. Variations of the algorithm are proposed by 
Schnorr [17] and Schonhage [18].) 

We now present our algorithm to solve the integer relation problem for al- 
gebraic numbers. Let a(1, ... , an be algebraic numbers, and let (xl) ... .an 
be rational complex numbers approximating them. We assume without loss 
of generality that a, - -aI is very small for all i (cf. Lemma 4). For given 
E > O we want to find from (xl, ..., in an integer relation for a(1, ..., an, or 
prove that no such relation shorter than 1/e exists. To this end, we apply the 
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LLL-algorithm to the columns of the matrix 

lc . Re(-,l) ... c . Re(ci,) 
c *Irn(xl ) c *Im((0')j 

Here, c is a large integer specified in Lemma 4. 

(Remark. Similar lattice bases are used in [12] to find the minimal polynomial 
of an algebraic number, and in [13] to solve Diophantine approximation prob- 
lems.) 

Let b = (ml, ..., m", c *m1Re(-01), c EmlIm(-01)) be the vector 
produced by the algorithm. If Ijbjl2 > 2n /,2, we claim that a xl)..., a1o do 
not satisfy an integer relation shorter than 1/E. Otherwise, we claim that 
(mln, ... , m") is an integer relation for al ...O, na (which, in addition, is 
obviously of length at most 2n/82) . 

The correctness of these two claims, and thus of our algorithm, will be shown 
with the help of Lemma 4. 

Lemma4. Let 1 > E > 0 be given, andlet a1, ... ., an, s, h and a(n, s, h, ImII) 
be as in Proposition 1. Define 

q :4n*2n12 *a(n, s, h, IamI) 

and define c := [1/(2nq)1 . Let -x,, ..., ( n be complex numbers such that 
maxIa, - ,I <q holds. 

(a) If m = (ml, ..., mn) E Zn \{} is an integer relation for ao1, ..., (an 

and 11mII < 1/e, then 

n 2 

1]m12+ C 2 .E XmE< 
2 

jjmflIc2.EOI~MI -II 

(b) If m- (ml, ..., i,1) E Zn \ {0} is not an integer relation for a1, ..., 
On, then 

2 2 
||M||2 + c2* ES (xm, > 2 

Proof of Lemma 4. For the proofs of (a) and (b) we need the following claim, 
which can be immediately verified. 

(1) For all m E Zn we have 

EZ ,m,-ZEOm, <n*q*IjmII. 
i=1 I,= 
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Proof of (a). Since lmll <? 1/E, and by (1), we have 

11 m|2 2 22 

H1ml2 ?c ZC 11?? n 
1=1 82 8 

By construction, c * n * q < 1, hence claim (a) is proven. 

Proof of (b). If IImII > 2n/2/c, the assertion is obvious. So we assume 11mll < 

2n/28. By Proposition 1 we have 
n 

Z alm| > a(n, s, h, llmll). 
i=1 

Since a(n, s, h, flmfl) is monotone decreasing in flmll, this implies 

ZE a m, > a(n, s, h, 2 12 /E). 

Applying (1), we get 
n 

Z iim| > a(n, s, h, 2n/2/c) - n * q *2n/2/C. 

By the choice of q, this implies 
(2) 1 E 1n , 1m1 > a(n, s, h, 2n121/) * 

Now by choice of c we get the desired bound: 

11 ,2 + 2 
jMI 

(2) 2 Tn/2/) 21 42- 1 2~ 
flmfl +c |E~zm| (>c *a(n, s, h, 2/) 1 > 42 4 2 

This finishes the proof of Lemma 4. E 

The correctness of our algorithm can be derived from Lemma 4 as follows. 
If the algorithm outputs m, then m is an integer relation for a 1, ... ant 

since otherwise by Lemma 4(b) the algorithm would not have put it out. If 
the algorithm claims that there is no integer relation shorter than 1/e, then we 
have flbl2 > 2 n/C, and hence each nonzero vector in the lattice we deal with 
is longer than vK2/c. So, by Lemma 4(a), the claim of the algorithm is correct 
also in this case. 

In order to analyze the run time of the algorithm, we now specify the ad- 
missible inputs a-, ... , ?, C. Certainly, we require la, - odl < q for the 
q of Lemma 4 in order to assure the correctness of the algorithm. But in 
order to maintain a run time polynomial in log 1/c, n, log max, h (a,) and 
MO I 1 ... , Qj): Q], we must also bound the binary length of the input by 
a bound polynomial in these sizes. Hence we assume that the input numbers 

,.. , fn and c are (real or complex) rationals with a common denominator 
t, where 
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Here, as before, we use the abbreviations s and h for [Q(a1, ... , a): Q] 
and log max, h (a,), respectively. Since Ioa I h (a) + 1 , this choice of t ensures 
that the binary length of the input is as small as required. One readily verifies 
that for each n-tuple (a1 , ... , an) of algebraic numbers there exist rationals 
T1 ' ... '~ An admissible for the algorithm. Now it is straightforward to estimate 
the run time of our algorithm with the LLL-Theorem. 

The analysis of the algorithm is summed up in the following theorem. 

Theorem 5. Let a I, ..., (an c C be algebraic numbers, and let t be an integer 
3 22 2 3 n ns 2ns 12n~S not larger than (2 h )/ 1 Let l, ,(Z+ iZ) satisfy 

maxima<loa,- K . Then, for given ( ... , a and a, the algorithm per- 
6 2 forms O(n s (ns + log h + s log 1 /E)) arithmetic operations on rational numbers 

3 2 of binary length O(n s (ns+log h +s log 1 /e)) . It eitherfinds an integer relation 
m with Ilml 2 < 2n /.2 for a1 ... 

, ana or it proves that the Euclidean length of 
the shortest integer relation for a , .. ., an is larger than 1/ . 

4. OPEN PROBLEM 

Does a theorem of the following kind exist? 
"If a1, ... , an satisfy an integer relation, then they also satisfy an integer 

relation of length bounded by w, where log w is polynomially bounded in n, 
log max h (a,) and [Q(a1,** an.): Q]. 

Such a theorem would imply that the parameter e in our algorithm could be 
omitted. One could instead always run the algorithm for c := 17w in order to 
find an integer relation or to disprove the existence of any relation. This would 
still take poly(n, log max. h(ai), [Q(a, , ... , an) Q]) bit operations. 
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